polexis

4

Final Scientific and Technical Report for:
Active Methods for Warfighters

Sponsored by:

Defense Advanced Research Projects Agency

IXO
DARPA Order C043/60

Issued by:

U.S Army Aviation and Missile Command under
Contract No. DAAH01-02-C-R203

Project No. RTW BD02
Notices: Not applicable.

1 August 2003

Barrett Richey
VP Advanced Concepts
Polexis, Inc.

2815 Camino del Rio South
San Diego, CA 92108
Office: 619-542-7226

Fax: 619-542-8675
brichey@polexis.com
www.polexis.com

Active Methods for Warfighters — Final Report
28-Jul-2003

Abstract
The exploration investigated technologies that could be used to automatically
configure desktop applications to help the warfighter complete repetitive and/or
process-driven tasks by presenting the warfighter with just the right desktop
applications positioned in just the right place and configured in just the right way
with just the right content. Managing commonly used COTS applications and
constructing manageable custom applications were investigated.

Table of Contents ’
Lo Introduction ... et 3
2. Methods, Assumptions, and Procedurescovemmn et e e e e s 3
2.1. Managing COTS APPUHCALONS ..ot 3
2L AUOMAIC .ottt 3
2.1.2. Windows Applications MaNAZET ..o 6
2.2. Constructing Manageable Desktop Applications................ooocoomommvroioo 10
2.2.1. Adaptive Battlespace Awareness Templates.........c.vuoeeiooereeeneeooo 10
222. Smart Widgets.................._ ... 10
3 RESUMS AN DISCUSSION.....coooetetrtresoo s 11
3.1. Managing COTS APPICAONS .cooovoeeevcecce e 11
3 LLe AUOMAIC. et 11
3.1.2. Windows Applications MAENAZEToovvvmmeeeeeeceteeeeeeeeeeee oo 11
3.2, Constructing Manageable Desktop Applications..............overeovvvvoooviooo 11
- 3.21. Adaptive Battlespace Awareness Templates.........oorvureeceereeeeeerrreeeooo, 11
3220 SMA WIS oo 11
& CONOIUSIONS ottt 12
3 ROAOIONCES ottt 12
6. Symbols, Abbreviations, and ACTONYINS...ccvvvvrrvveeeeeresenereeseeees oo 12
List of Figures
Figure 1: AutoMate Task Builder — Available OPLIONS covovoveeeeeee oo 4
Figure 2: AutoMate Task Builder — Interactivity and Window Options.......ccoovveeruerevecreeresrnnn, 5
Figure 3: Screen Layout Example.......ooeommirionineeeeo e e e s 6
Figure 4: WAM MenU OPHONS vttt 7
FIgure 5: Save AS DIalog.....oovvcrvosescsctrtesssssossssssse 7
FIGUIE 6: OPEN DiBlOg ...ttt 8
' List of Figures
Not applicable.

Polexis, Inc. Approved for public release; distribution is unlimited. 2

Active Methods for Warfighters — Final Report
28-Jul-2003

1. Introduction

The exploration investigated technologies that could allow the end-user to easily:
" Save the configuration (layout, context, and contents) of the user’s running desktop
applications.
* Open a saved configuration, reconstituting the layout, context, and contents of the desktop
applications defined in the configuration.
* Print the contents of all running desktop applications.
* Close all running desktop applications.
The problem was decomposed into two main areas of investigation: -
1. Managing COTS applications. ‘
2. Constructing manageable desktop applications.

2. Methods, Assumptions, and Procedures

2.1. Managing COTS Applications

With regards to managing COTS applications, there were two underlying facts that helped focus
the research. '
1. Each operating system (e.g., Windows, Unix/Linux, Mac) provides vastly different
mechanisms for controlling applications. '
2. The most widely used COTS applications in DoD are Outlook®, Internet Explorer®,
Word®, PowerPoint®, and Windows Explorer®,

Two technologies were investigated, AutoMate and COM/.NET via the Windows Applications
Manager (WAM) prototype.

2.1.1. AutoMate

The exploration investigated the use of AutoMate, a Unisyn Software product (their one and only
product), to control the placement, layout, and content of various desktop applications, such as
Groove, Word, File Explorer, Internet Explorer, and Visual Studio. The product allows non-
programmers to specify a series of simple actions that can be used to launch, position, control
(e.g., resize, select buttons, select menu items), and close applications on the Windows platform.
The left-hand portion of the following graphic shows the various actions that can be performed.

Polexis, Inc. Approved for public release; distribution is unlimited. 3

Y Services
(g Security
Wait

‘o

. N

Active Methods for Warfighters — Final Report
28-Jul-2003 .

T e e e SRS peni Rt it ¢
g watt for the window with the title "Welcoms Page - Groove”.

m Focus tha window with the title “Welzome Page - Graove".
;_'B ‘Wait For the wirdow with the title "Welcore Fage - Groove” to be Facused.

[Setect the item: (class = "ATL:SysListview32", name = "Vigilys", type = “Listlten”, value = ™, X =™, ¥ = ™, chech.
class = "YES", check name = "VES", check type = "YES”, check. value = "NO", check position = “NO"). The object
must be in the window "Welcome Page - Groowe".

{38) Press the cbiect: (dlass = "ATL:SysListView32", name = "Vigilys®, byps = "Listltem”, valus =", X =", ¥ =, charck

dass = "YES', check narne = “VES", chack type = "YES®, chack valus = "HO", check position = "NG"). The object

must be in the window “Welcoma Page - Groova"”,

&7 Run comimand "MSDEV.exe”,

m Vit For the window with the title “Microsaft Visual C++",

g’; Send keystrokes "{ALTH{DOWN} {DOWNHTOWMHDOVM} {ENTERL",
&Y Pun task file "Sample Tasks\Start vCC"
) Pun task fit2 "Sample Tashs\Start Explorer of IM"

Figure 1: AutoMate Task Builder — Available Options

The right-hand side shows a series of actions for a given task. The Interactivity and Window
actions provide many of the actions necessary to control an application’s window and dialogs as
shown in the figure below.

Polexis, Inc.

Approved for public release; distribution is unlimited. 4

Active Methods for Warfighters — Fmal Report
28-Jul-2003

! 'ar ctate Project ~ Autote Task Builder

[Wait for the window with the title "Welcome Page - Groove",
m Facus the window with the title "welcome Pags - Groove”,

-
~ iy Send Keystrokes
- Hold Down Key. EB Wait for the window with the title "Welcome Page - Groove” to be Fucusad.
¢, Release Key

G‘fMove Mouse to Object Select the iter: (class = "ATL: SysListvisw32", name = “igilys®, type = "Listltern”, value = ™, X =" ¥ =", check
0|

class = "YES", check name = "YES", check type = *VES", check va!ue ="NO", chern position = "MO™). The obiect

“ 9”0"3 Mouse must be in the window “Welcome Page - Graova®,
~ 3 Click Mouse {3&] Press the ebjact: (class = "ATL:Syslisttiewd2", name = *Vigitys", kype = “ListItan”, value =™, X =", ¥ = ", check
Get Text class = "YES", chack name = "VE: chack type = "YES", check. valu-= = “Ni", che-.k poshon = 'Mﬁ",\ The object
--g;._';Set Text musk be in the window “Welcoms F‘a-"e Grogvs",
- A Check &7 Pun command "MSOEV.ese”
)
:elect Teem £ valt For the windows with the title "Micrasoft Visual C4++.
$]Press

= Window e
{EAlFocus Window i
[EIMaximize Window
{ZIMinimize Window
{FRestore Window
£8Move Window
ffIresize Window
HHide Window
. FJunhide Window
- Bcise Window
o S Clipboard

fg’ Send keystrol es "{ALTHHOOVM] {DCWNHDOWNHDOWN} ENTER "
£ Pun task Fil2 “5ample Tasl sistart VCC '

8y Run tash File "Sample Tasts\Start Explorer of IM°

"..-\Variables AWaiches £ Output ABreakpoints {Attachments /

Figure 2: AutoMate Task Builder — Interactivity and Window Options

In order to evaluate the effectiveness of AutoMate, a software engineering task was created that
automatically configured the environment for a couple of engineers working on some code. The
AutoMate task did the following (and is pictured in the figure below):

* Launched Groove with a specific shared workspace opened and then repositioned and
resized the window as shown in the figure below (window on the far left side and
mostly obscured by the MS Visual Studio window).

* Launched MS Visual Studio with the skinned.dsw file opened and then repositioned
and resized the window as shown in the figure below (window on the right side and
taking up most of the screen).

» Launched MS Word with SDD.doc opened and then minimized the window.

* Launched MS File Explorer with a particular directory opened and then minimized
the window.

Polexis, Inc. Approved for public release; distribution is unlimited. 5

N

Active Methods for Warfighters — Final Report

28-Jul-2003
B CStnng aBtnNane = m_File R:A String(" TRACKBARINFO",
- . if ('mBtnName IsEapty(})
g skinned files < K
; = %y Source Fies . CString mPath(m_SkinName): . NN
gtge ot R K] Acetate cpp 1 CString aMame = GetFirstParam(aB:nName) T
Borr "':h" -‘f—’]"“"“"""m‘“’” CString mThuabl = GetFirstParan(nBtnNane),
m“““'w"“n E ;,:]:;’:&bﬁ;jw M- CString rThumbD » GetFirstParam(mBtnNane):
ne . £ (<po
Suspended i LIJJ BtmacBm.cpo =i CRect r = StringToRect(mBtnNane):
"':‘ gumsof'Ccpa X . CString aThunbDir = GetFirstParaa(aBtnNane),
,,,] tmapProgress ¢po K CString aThuabDef = GetFirstParaan(aBtnNane)
3] BamapSudetcop i CString mThuabTT = GetFirstParam{mBtnNane=),
EnurrProc cpp .
gEmIAunEucelccn L CSkinSlider» m_Slider » nev CSkinSlider,
A EveniPlaceWndow: 7} | - a_Slider->Create(VS_VISIBLE, r. this, 0). :
&) inifie Cop . a_Slider->CopyFron(r. a_ Normal. getPath(aPath) + mThumbN. getPath(mPath) + Thu
Hrecpe n_Slider->a_ID » 1.
-] ListenSocket.cop n_Slider- a_IDHane « alame.
%]Myiocke'.cw » Slxder-’SetPcs(alm.(nThuanef)) -t
- o StunButon cpp LE(mThunbDir(0] te
2 Skunlralog.cop . 5.1d-‘—>l(adxf;$!yle(0 TBS_VERT) .
%] SkinLabet cpp) n Slxdars Add(m_Slider).
&) shened cop }
3 sinnedDig cpp) }
_]Skw{’rogvesxcpp }
. . |
- void CSkinDialog: -ReadTextInfo(CIniFile n_File) - ke
: Class lgnmlgﬂe\fﬂ el sn . ’ _’.’J
x o~
7 bl
pR N
Cenversation
Rk Holdter ' H
B ‘_‘/ Tak ¢
(o), deChat i :
@:‘9’, () M :
: >
o

BLOOTRH sam

Figure 3: Screen Layout Example

AutoMate also allows the user to set various triggers that can be used to launch each task. The
user may select from the following.

s Schedule watcher

* Window watcher

» Performance watcher

» Key watcher

* Event log watcher

» [dle watcher

» System change watcher

= File watcher

2.1.2. Windows Applications Manager

The exploratlon implemented an easy-to-use COM/.NET-based program dubbed Wmdows
Applications Manager (WAM) that can save the configuration of the currently running versions

Polexis, Inc. Approved for public release; distribution is unlimited. 6

Active Methods for Warfighters — Final Report
28-Jul-2003
of Internet Explorer, Word, PowerPoint, and Windows Explorer as a named configuration so that
they can be restored at a later time. The prototype capability is presented below.

The WAM program runs in the Windows system tray. Once the desktop applications are running
and configured as desired, the user can select the WAM icon. Selecting the WAM icon presents
the user with the following options.

Figure 4: WAM Menu Options

The Save Configuration... option presents the user with the Save As dialog, shown below, that
allows the user to name the current configuration and then save it.

My Desktop Confuauratlons _

(=] AM::AM bnef dsk
J DARPA BAA.dsk
(%8 NIJ BAA.dsk

- Y FEESTR
) LRERL

i[Prepare Dally Bnef

.as _v,-pe [desktop flles [dslf]

Figure 5: Save As Dialog

The tray icon also allows the user to open a previously saved configuration. The Open
Configuration... option presents the user with the Open dialog, shown below, that allows the
user to open a named configuration, which restores the layout, context, and content of the
desktop applications at the time the configuration was saved.

Polexis, Inc. Approved for public release; distribution is unlimited. - 7

Active Methods for Warfighters — Fmal Report
28-Jul-2003

=3 My Desktop Conftguratlons

{28] AMSAM brief .dsk
i#] DARPA BAA. dsk
]NIJ BAA.dsk

Prepare Daily Brief.dsk

F‘repare Dally Bnef dsk

desklop hles [" dsk]

Figure 6: Open Dialog

Although not fully implemented, the Save All option tells the desktop applications to invoke
their save function, and the Print All option tells the desktop applications to invoke their print
function. The Close All option tells the desktop applications to invoke their Exit function.

WAM’s Use of Win32, COM, and .NET

WAM uses a combination of Win32, COM and .NET COM/Interop to perform its functions. - It
is implemented in .NET because the COM/Interop has a convenient COM wrapper capability.
. The .NET COM wrapper capability makes working with COM easier than the equivalent in C++.
However, C++ and COM provide the greatest flexibility and efficiency and would be the
recommended approach when developing a production version of WAM.

Saving An Application’s State

Applications that run on the Windows platform may use one of a variety of interfaces to allow
other processes to retrieving their current state (e.g., position on the screen, size, file being
edited. URL, etc.). WAM uses a variety of heuristics to guess what data an application may have
open. These heuristics use low level Win32 calls and COM methods to interrogate applications
for things such as window position, size, window title, etc. Window position and size can be
fairly well determined using Win32 calls by walking the current list of active windows. The
" trickier job is finding the documents and URLs that an application may have opened. WAM does
this by using a variety of mechanisms. Window Monikers are well known application strings that
can be examined for currently opened files. Window titles may also provide a good idea of what '

Polexis, Inc. Approved for public release; distribution is unlimited. ' 8

Active Methods for Warfighters — Final Report
28-Jul-2003

an application is doing. COM can be used on some applications, such as Office, to retrieve the -
documents that are opened.

Unfortunately, very few applications, i'ncl'uding Office and Explorer, tell you exactly what
_portions of a file are being displayed, and the entire set of user preferences inside the application.

Restoring An Application’s State

Restoring an application’s state is a simpler process than saving it. Most applications provide a
way to start them up with an associated document or URL. Windows Office applications and
Window Explorer have a simple memory regarding their screen size and position. The Ofﬁce
application memory is too limited for WAM goals For instance:

» Office doesn’t remember its window size and position based on the document it had
opened. It only remembers its last window size, and in the case of multiple windows and
multiple documents, if forgets most of the other windows’ states.

* Windows Explorer does a good job of remembering window size and position based on
the folder a user has opened.

» Internet Explorer does a poor job of remembering size and position based on a URL.

In order for WAM to ensure that all applications are restored to their original size and position
for each document, low-level Win32 calls are used. WAM begins by starting all applications
with their associated documents. It then traverses the list of windows on the desktop and resizes
and repositions the windows to the sizes and positions saved in the named configuration file.

Closing All Appliéations

The ability to close all applications is ‘accomplished through low-level Win32 calls. WAM
traverses the window list and closes all top-level applications associated with these windows.

Saving All Applications Documents

Saving an application’s current document is only performed on Office applications. Windows
Explorer and Internet Explorer are primarily used to browse existing information sources so save
does not make sense for these applications. WAM accomplished this global Office save by
traversing the window list and monikers, finding the associated applications with each window
and moniker, and then calling the save function on each office application through COM.

Printing All Applications Documents
Printing an application’s current document is only performed on Office applications. WAM
~ accomplished this global Office print by traversing the window list and monikers, finding the

associated applications with each window and moniker, and then calling the print function on
each office application through COM.

Polexis, Inc. Approved for public release; distribution is unlimited. 9

~

Active Methods for Warfighters — Final Report
28-Jul-2003

2.2. Constructing Manageable Desktop Applications

With regards to constructing manageable desktop applications, there are a couple of drivers that
helped focus the research. :
1. Javais good for developing cross-platform applications, but
2. Java-based desktop applications are difficult to control without some support constructed
with the application

2.2.1. Adaptive Battlespace Awareness Templates

Adaptive Battlespace Awareness (ABA) Templates were developed by Polexis, Inc. for the
DARPA/DISA JPO. Their goal was to develop an interface specification for constructing
components that can save and restore their layout, context, and content, where each visual
component (e.g., map, table, and graph views) implements an interface. A reference
implementation written in Java was developed by Polexis, Inc. and integrated into the ABA
version of Extensible Information Systems™ (XIS™),

The templating mechanism relies on a central controller to store and retrieve templates from an
XML repository. The storage and retrieval of the contents of each view requires the views to use
the XIS LeifDataltem as an interface into the raw data accessed by the views.

An early version of ABA Templates was used on this project, but because of time constraints and
the relative complexity of the ABA Templates (some of the complexity has been reduced in a
subsequent version), the project team failed to get a useful capability constructed.

2.2.2. Smart Widgets

Where ABA Templates worked at the component level, the smart widgets concept was designed
to operate at the widget (e.g., frame, panel, list, menu item, button) level. Each smart widget
extends a widget used to construct HCIs in the object-oriented language being used (e.g.,
SmartJFrame extends javax.swing.JFrame). Each smart widget. simply writes its state
information to a file each time the state of the widget changes (e.g., SmartJFrame writes out the X
and y position of the frame (i.e., window) and the height and width of the frame). The smart
widgets write out their state information on a per-user basis, so that each user’s windows can be
restored on restart of the application. Smart widgets developed were:
* SmartJFrame

SmartJPanel

SmartJSplitPane

SmartJList

SmartJMenubar
~SmartJMenu

SmartJMenultem

SmartJToolBar

Smart]Button

SmartFileChooser

SmartJComboBox

SmartJSlider

Polexis, Inc. Approved for public release; distribution is unlimited. 10

.

Active Methods for Warfighters — Final Report
28-Jul-2003

3. Results and Discussion

3.1. Managing COTS Applications

In Windows, Java windows are lightweight windows and not true windows; therefore, the Java
windows do not expose the widgets that true windows do. Since AutoMate and WAM only run
on Windows, neither can be applied to Java-based applications.

3.1.1. AutoMate

There are drawbacks to using AutoMate for controlling desktop applications.

* Some of the actions are time-delay sensitive, which can and did cause inconsistent
results. This was especially true when controlling web pages in the MS Internet
Explorer application. Because of time, no specific experiments were performed;
however, there was obvious visual evidence of the inconsistent results.

* Developing a task using the AutoMate Task Builder window requires considerable
time to develop and test. Spending an hour or more to develop a complex, often-
performed task would provide a payoff, but spending an hour or more to save off the
configuration of some desktop applications would not.

3.1.2. Windows Applications Manager

There are drawbacks to using WAM for controlling desktop applications.
* WAM only works on Windows platforms that have been upgraded with the .NET
runtime package. The WAM program can be re-written in C++ rather than C#. This
would allow the WAM program to operate on most versions of Windows.

= Each application to be controlled must be coded into the WAM program. This
reduces the burdened for the end-user, but increases the burden on the WAM program
to stay up-to-date with the most used COTS desktop applications.

3.2. Co'nstructing Manageable Desktop Applications

3.2.1. Adaptive Battlespace Awareness Templates

The biggest drawback to using ABA Templates for controlling desktop applications is that it is
fairly complex. On the plus side, the ABA Templates is just an interface specification, so it can
be implemented in any language.

3.2.2. Smart Widgets

Smart widgets had no obvious drawbacks. Using them on various windows was easy and
provided instant benefit to the user. It is also easy to insert smart widgets into existing code.
Once the user organized his/her windows (location and size) and split panes, selected items in
lists, etc., the user didn’t have to repeat the same activities on subsequent runs. The fact that the
state information was stored in files made it easy to copy them onto a floppy diskette for sharing
with other users. Additionally, although not implemented, storing the state information in files
should make it easy to store and managed named configurations simply by copying the default

Polexis, Inc. Approved for public release; distribution is unlimited. 11

L)
“

LY

Active Methods for Warfighters — Final Repor't
28-Jul-2003

conﬁguratiop to named directories. Upon user selection of a named configuration, the path to the
appropriate named directory can be established.

4. Conclusions

Based on the ease-of-use requirements, the WAM approach is better than the AutoMate
approach. Because the ABA Templates interfaces are complex, smart widgets is the better
approach. A combination of both smart widgets and WAM provides a fairly complete capability.
If a smart widget-based application provided a mechanism (e.g., socket-based message) to allow
an external program such as WAM to tell the application to save its configuration and assign it a
name as mentioned in section 3.2.2 and a mechanism to allow the external program to launch the
application with a specified named configuration, then the smart application, especially Java-
based applications, would play nicely with the WAM program.

5. References
None.

6. Symbols, Abbreviations, and Acronyms

ABA — Adaptive Battlespace Awareness

COTS - Commercial Off-The-Shelf

DARPA - Defense Applied Research Projects Agency
DISA - Defense Information Systems Agency

DoD — Department of Defense

HCI - Human-Computer Interface

JPO - Joint Program Office

WAM - Windows Application Manager

XIS — Extensible Information Systems

XML - Extensible Markup Language

Polexis, Inc. Approved for public release; distribution is unlimited. 12

